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SUMMARY 

Flight tests were conducted  with two jet-propelled airplanes i n  
rough air to   inves t iga te   e f fec ts  of sweep on gust loads and gust selec- 
t i v i t y .  Data were-obtained  with  an unswept-wing airplane and a 35O swept- 
wing airplane f o r  incremental  accelerations up t o  9.7 and 1.1 g corre- 
sponding to   a i rspeeds of 300 and 450 miles per  hour,  respectively. The 
r a t i o  of the  loads on the  swept-wing airplane  to   those on the  unswept- 
wing airplane w a s  0.82 for both test  speeds.  Simple  analysis and previ- . 
ous gust-tunnel  investigations had indicated  that   the  loads  ratio  should 
be  nearly  proportional  to  the  ratio of the slopes of the  lift curves. 
The experimental  loads r a t i o  agreed w e l l  with the r a t i o  of the  l i f t -curve 
slopes  obtained  from low-speed wind-tunnel tests or  calculated by t h e  

- 

empirical   relation a = 6A 'Os * , where a is the   s lope of  the lift 
A f 2 cos2A 

curve, A i s  the  aspect  ratio,  and A i s  t he  angle of sweep. The loads 
r a t i o  also agreed closely with  the  cosine of the  angle of sweep, indi-  
cating that, fo r  wings of mderate   aspect   ra t io ,  fie cosine of the  sweep 
angle. would approximate the  reduction of gust loads t h a t  could be expected 
because of sweep. A n  analysis of  the  gust gradient  distances  indicated 
only sl ight  differences i n  the gust se lec t iv i ty   charac te r i s t ics  of the 
two airplanes. 

INTRODUCTION 

The aerodynamic loads imposed by fl ight  through  turbulent air are 
frequent ly   the  cr i t ical   loads  in   the  design of transport  and  boniber air- 
planes. Most gust-load  studies made in   t he   pas t  were confined to unswept 

mation on the   e f f ec t  of sweep on gust Loads. Various  factors which a r e  
known t o   a f f ec t   t he  gust loads on swept w i n g s  are lift-curve  slope, gust 

- wings but  the  increasing use of swept w i n g s  has created a need for   in for -  
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se lec t iv i ty ,  stability, and rate of penetration  into  the  gust .  The gust 
s e l e c t i v i t y  of the  a i rplane is defined as t h a t - p r t i o n  of the gust spec- 
trum which causes aerodynamic loads above a specified  threshold. 

Some Information  has  been  obtained  concerning  the  over-all  effects 
02 sweep on  gus.t loads from  gust--tunnel t e s t s   ( r e f s .  1, 2, and 3 )  i n  
which the swept w i n g s  were derived from the  unswept wings by rotation. 
The r e su l t s  of these   t es t s   ind ica te   tha t   for  a s ingle  gust the gust loads 
on swept  wings as compared t o  the gust  loads on the  corresponding unswept 
wings are  roughly  proportional  to  the  ratio of the  l i f t -curve  s lopes  with 
a small reduction due to   pene t ra t ion   e f fec ts .  The gust-tunnel tests, 
however, are restr ic ted  to   small-scale  models and to   the  s implif ied  rep-  
resentation  of  atmospheric  turbulence by a single  gust. Moreover, the  
gust  tunnel  provides l i t t l e  o r  no information  concerning  the gust selec- 
t i v i t y  between d i f fe ren t  wing configurations. A f l igh t   inves t iga t ion  of 
t he   e f f ec t  of sweep on gust loads w a s  needed, therefore,   to  provide some 
data  for  correlation  with  the  gust-tunnei work and t o  determine the  gust 
se l ec t iv i ty  of  t he  swept-wing airplane. 

A cooperative  f l ight  investigation was undertaken  by the National 
Advisory Committee for  Aeronautics and the  Directorate of Fl ight  and All- 
Weather Testing, Wright A i r  Development Center, Air Research  ana Develop-. 
ment Command, U. S. A i r  Force. A swept-wing airplane and an unswept- 
wing airplane, which were roughly similar except  for sweep, were ut i l ized.  
The airplanes were j,et fighters  supplied  by  the U. S. A i r  Force.  Sfde- 
by-side  f l ights (sfmilar to   those  of ref;- 4) were made in   tu rbulen t  air  
to   ob ta in  a comparison of t he  gust loads and gus t   se lec t iv i ty  of the  two 
airplanes. This report  presents an analysis of t he  results obtained 
from t h i s  phase of the Flight tests. 

Two jet-propelled  airplanes, one with unswept wings and one with 
t h e  wings swept back 35O, were used in   the  invest igat ion.  Three-view 
drawings of' t he  two test airplanes are shown i n  figure 1. The pertinent 
charac te r i s t ics  of each airplane as flown a r e  given i n  table I. Also 
included i n  t ab le  I.&re values of an  equivalent-unswept-wing  derived by 
ro t a t ion  of the swept wing about i t s  4: -chord  point t o  an angle of zero 
sweep. A comparison  of the  character is t ics  of the equfvalent unswept- 
wing atrplane  to   those of the unswept-wing airplane used i n   t h e  tests 
indicates that the   t e s t   a i rp l anes  approximated the  condition  of an 
unswept wing  and a swept wing obtained  by  rotation  of the -chord l i n e  

of the unswept w i n g .  

1 
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- The following  instruments were i n s t a l l e d   i n  each  airplane t o  
obtain  information  pertinent  to the gust loads: 

(1) magnetically damped recording  accelerometer 
(2) MCA airspeed-altitude  recorder 
(3)  NACA 1-second in te rva l  timer 

The recording  accelerometers  were damped t o  0.7 of c r i t i c a l  and had a 
natural  vane  frequency of about 19 cycles  per  second, Their range f o r  
a full-scale film deflect ion of 2 inches was  from -1g t o  3g. The accel- 
emmeters were located a8 near as p rac t i cab le   t o  the center of gravi ty  of 
each  airplane,  For the unswept-wing airplane, the accelerometer was 
located  approximately 5.5 feet forward of t he  normal center of gravi ty  
of  the airplane. In the swept-wing airplane  the  accelerometer w a s  
mounted approximately 2.3 feet forward of t h e  normal center  of  gravity 
of the airplane.  Corrections t o  the measured accelerations due t o  dis-  
placement of the  recording  instrument  from the center of gravi ty  w i l l  
be discussed subsequently. 

. The stat ic-pressure  source  for   the  recording  a i rspeed  fnstal la t ion 
. of  each airplane was calibrated by the fly-by method (ref. 5 ) ,  and t h e  

r e su l t s  are given i n   f i gu re  2 where the s ta t ic-pressure  error  is shown 
as a function of the indicated  Nch number. 

The  test  procedure  consisted  of 12 side-by-side flights through 
c l ea r  air turbulence  over a fixed course of about 22 mfles in the vicin- 
i t y  of Dayton, Ohio. All f l i g h t s  were made i n  continuom  rough air k t  
an altitude  of  approximately 1500 feet above te r ra in ,  Each flight con- 
s i s t e d  of four runs, two at 300 miles per hour and two at 450 miles 'per 
hour. The p i lo t s !  assignments and the order of the high-.and low-speed 
rum w e r e  varied randomly t o  eliminate  consistent  combination  of 
conditions  that  might a f f ec t   t he   r e su l t s ,  A minim of p i lo t   cont ro l  
w a s  used on a l l  f l i gh t s .  ,No external tanks w e r e  used on either airplane 
and the  dive brakes remained closed  throughout the tests. 

- 

1 

The acce lera t ion   recora  were evaluated to   ob ta in  the maximum value 
of acceleration-between any two consecutive  intersections of the record 
l i n e  with the 1 g reference and the distance  traveled f rom each inter- 
sec t ion   t o  the following peak acceleration, The la-6ter measurement is 
considered a measure of the gust gradient distance and is referred t o  
RS such in   t h i s   r epor t .  The evaluation was confined t o  values of accel- 

runs of the  unswept-wing airplane, and 0.25g and 0.35g fo r   t he  swept-wing 
airplane. dese  thresholds  correspond t o  effective gust veloc i t ies  of 
approximately 5 feet per second. 

I erat ion increment greater than 0.3g and 0.45g f o r  the low- and high-speed 

I 



4 mCA RM L52Lo2 

The airspeed-altitude  records were evaluated to   ob ta in  an average 
airspeed and a l t i t ude   fo r  each  run and t h e   t o t a l   f l i g h t   d i s t a n c e   i n  a i r  
miles of each  run. Corrections were -de f o r  static-pressure  errors 
according t o  the calibration showwin figure 2. 

Since  the  recording  accelerometers of both  airplanes were not 
located  exactly at the  center of  gravity, it- was necessary to   correct  
the  measured accelerations  for-the  angular  acceleration of the  airplane.  
The corrections were made by use of the  following  equation which i s  
equation (A6) from qpendix A of reference.. 4: 

b c g  = &A - _. _. . , , .. 

1 + w ( X 2  - BX) 
=Yg 

where . 

f%3 

an, measured acceleration  increment 

acceleration  increment a t  center of gravity 

W airplane  weight 

. .. 

=Y - prltching moment of i n e r t i a  of afrplane about center of 
g rav i ty -  - -  

Q acceleration of gravity 

X distance from center of gravity  to  recording  accelerometer 

B distance from  recording  accelerometer to   cen ter  of l i f t  

This  equation  takes  into  account  the  effect of pitching motion on accel- 
e ra t ion  measurements made away from the  center of gravity of the   a i rplane 
and has  been shown t o  agree very w e l l  with f l i g h t  results. The acceler- 
ation  correction amounted t o  4 percent  for  the unswept-wing airplane 
and 5- percent  for the swept-wing airplane. The acceleration  data for 
both  airplanes were further  corrected  to a standard condition (wing 
loading of 45 pounds per-square  foot  and.a forward velocity of 300 o r  
450 miles per hour) on the  basis of the  assumption that   the   accelerat ion 
increment var ies   direct ly  as t h e  forwasd  speed and inversely as the  wing 
loading. The correction was made to   e l iminate  any effects   resul t ing 
from small var ia t ions  in . these  quant i t ies  which occurred  from rmn t o  
run. 

.. 

1 
2 

The corrected  acceleration data were sorted Into frequency d i s t r i -  
butions  with  class  intervals of 0.05g. These data are tabulated i n  
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t ab l e  I1 with the t o t a l  f l ight   miles  f o r  ea'ch test condition. The CUILN- 

frequencies of t ab le  11, were divided  into the t o t a l  f l i g h t  miles t o  
obtain  the  average n-er of miles flown t o  equal or  exceed a given 
acceleration. These r e su l t s  me shown p l o t t e d   i n  figure 3. As a com- 
parison of the  gust  loads  experienced by the two airplanes, the r a t i o s  
of the  gust  loads on the  swept-wing a i rp lane   to   the  gust loads on t he  
unswept-wing airplane were obtained  for equal f l ight   dis tances  from f ig -  
ure  3. The load  ra t ios   are   sham in f igure  4 as a function of various 
acceleration  increments of the unswept-wing airplane.  The loads ratios 
m e  shown i n  figure 4 only for acceleration increments q p  to 0.66g for 
the  tests at 300 miles  per hour snd 1.OOg for the tests at 450 milee  per 
hour because of the s m a l l  sample s i ze  for higher acceleration increments. 

- l a t i v e  frequency  distribution,  obtained  by  successive.  addition of t he  

- 

Considering t h e   s c a t t e r  of the data, reading  accuracies, and con- 
s is tency of repeated runs, the  over-all  precision of t h e  load ratios as 
determined f rom t h e   f l i g h t  data is estimated t o  be within 23 percent. 

The gradient  distances  for all accelerations  corresponding t o  
effect ive  gust   veloci t ies  of approximately 6 feet per second o r  higher 
were sor ted  into  c lass   intervals  of 5 chords  fromwhich r e l a t i v e  fre- 

. quency dis t r ibut ions were  obtained.  Figure 5 presents   the distributions 
f o r  the  gradient  distances measured i n  mean a e r o d y n d c  chords (stream- 
wise chords) f o r  both  airplanes. Also included in   f i gu re  5 is a dis-  

panel  chords (mean aerodynamic  chords multiplied by the  cosine of t he  
sweep angle). 

. t r i bu t ion  of gradient  distances f o r  the  swept-wing airplane measured i n  

- 
DISCUSSION 

From f igure 3 it can be seen that, f o r  an equal nuniber of miles 
flown a t  each  speed, the  swept-wing airplane  experienced lower loads i n  
turbulent   a i r   than  the unswept-wing airplane. The average r a t i o  of 
loads on the  swept-wing airplane  to   the  loads on t h e  unswept-wing air- 
plane, shown in   f i gu re  4, is approximately 0.82 for   both test speeds and 
is  fairly  constant  throughout  the  acceleration  range  covered  by  the tests. 

The ef fec t  of sweep on the   gus t   se lec t iv i ty  of the two airplanes 
involved i n  this investigation m y  be seen from a study of f igure  5,  
which presents the frequency  distribution of gust  gradient  distances 
f o r  both  airplanes. It is seen f r o m t h e  f igure  that there  is l i t t l e  
d i f fe rence   in   the  gust se l ec t iv f ty  f o r  the  swept- and t h e  unswept-wing 
airplanes,  B w e d  on s t r e m i s e  chords,  the gust gradient  distance most 
frequently  experienced was 13 chords f o r  t he  unswept-wing airplane and 
15 chords f o r  the  swept-wing airplane. Figure 5 also presente  the dis- 
t r i bu t ion  of gust gradient  distances on the   basis  of panel  chords, for 
t h e  swept-wing airplane only. This d is t r ibu t ion  agrees rather   c losely 
i n  both magnitude and shape w i t h  t ha t ,  based on the streaswise  chord, 
f o r  the unswept-wing a-rrplane. 
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Calculations of the gust-Loads r a t i o  can be made by using the  
sharp-edge-gust equ@t:iop and the acce lera t ion   ra t io  . .. 

where 

an acceleration increment 

P air density 

S wing area 

U gust veloci ty  

v forward velocity 

a slope of lift curve 

W a-trplane  weight 

Bs, acce lera t ion   ra t io  
&S 

4 3  acceleration increment due t o  sm'edge gust, -2w P m a  

Since the acceleration data were corrected  for w i n g  loading and speed 
differences and since the airplanes were flown at the same a l t i tude ,  the 
loads   ra t io   for  the two afrplanes  reduces t o  

where subscripts 1 a n d .  2 refer t o  the swept- and unswept-wing a i r -  
planes,  respectively. The loads r a t i o  may be defined i n  terms of a 
single  parameter,  the  ratio of t h e   l i f t - c e e  slopes, i f  the  acceler-  
a t ion   r a t io s  are equal for  both airplanes. The primary  vmiables 
a f fec t ing   the   acce le ra t ion   ra t io  are mass r a t i o  and @;ust se l ec t iv i ty  
with some ef fec t  due to  the  gradual  penetration of t h e  swept wing in to  
the  gust. From table I and figure 5 it is noted  that   the mass r a t io s  
and gus t   se lec t iv i t ies  of  t he  two airplanes are nearly the. same. Gust- 
tunnel tests and calculatfons  indicate that the e f fec t  of penetration 
would be  less  than 2 or 3 percent f o r  sweep angles up t o .  45O. It appears, 
therefore, that only small errors  are introduced in this case by assuming 
that the   acce le ra t ion   ra t ios   for  the two airplanes are equal. 

The following table compmes experimental loads ra t io   with  the r a t i o  
of the lif t-curve  slopes of the two airplanes  obtained from several  
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sources, where M is the  Mach  number and A is  the  aspect  ratio.  
Values of t he  wind-tunnel  lift-curve  slopes were taken from reference 6 
and unpublished  data and reproduced herein as figure 6. 

Loads ratio  obtained from f l i g h t  tests 
at M = 0.4 'and 0.6 . . . . . . . . . . . . . . . . . . . . . .  0.82 

Ratio of wind-tunnel lift-curve  slopes: 
a t  M =  0.4 . . . . . . . . . . . . . . . . . . . . . . . . . .  0.81 
at M = o . ~  . . . . . . . . . . . . . . . . . . . . . . . . . .  0.78 

Ratio of l if t-curve  slopes based on 
6A cos A 

A + 2 cos2A 
. . . . . . . . . . . . . . . . . . . . . . . . .  0.84 

C O S A  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.82 

It may be  noted  from this table   that   the   load  ra t ios  based on the  
cosine of sweep, the  empirical  formula, and the  whd-tunnel  l if t-curve 
slopes of M = 0.4 are i n  good agreement with  the  f l ight  tests. The 
agreement  between the  loads r a t i o  and the  cosine of t he  sweep angle  indi- 
ca t e s   t ha t   t he   l a t t e r  may be  used as a rough estimate f o r  determining 
the  reduction  in  loads  that  might be  expected  because of sweep. This 
r e l a t ion  would not be expected t o  apply at very l o w  aspect  ratios or  at 
very  high  angles of sweep.  The load r a t i o  obtained from the  wind-tunnel 
l if t-curve  slope a t  M = 0.6 does not  agree  with t h e  f l i g h t  tests and 
is not  within  the  experimental  error of t he  tests. This may have  been 
expected on the  basis of reference 7 where it w a s  shown tha t  no Mach 
number correction was needed for   l i f t -curve  s lopes used for  the  predic- 
t i o n  of gust loads on unswept wings,  even  though such a correction 
appeared valid from  wind-tunnel t e s t s .  

I 

CONCLUDING REMARKS 

Results of a f l ight   invest igat ion of two jet-propelled  afrplanes 
t a  determine  the  effect of sweep on gust  loads and gust se l ec t iv i ty  show 
tha t   the  35O swept-wing airplane  experienced lower loads in   tu rbulen t  
air than  the unswept-wing airplane. As  indicated by previous  gust-tunnel 
investigations of  sweep, t h e   r a t i o  of loads on the two airplanes agreed 
w e l l  wi th   the   ra t io  of the  l if t-curve  slopes related by the  cosine of 
t he  sweep angle or calculated by the  empirical  formula 6A cos A 

A -+ 2 cos2A' 
where A is the  aspect   ra t io  and A is the  angle of sweep.  The experi- 
mental loads  ratio  also  agreed with the  r a t i o  of l if t-curve  slopes from 
low-speed wind-tunnel  data, but the  use of high-speed  wind-tunnel data 
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does not  lead t o  as good agreement. A n  analysis of the  gust  gradient 
distances  indicated  only  slight  differences  in  the  gust  selectivity 
characterist ics of the  two airplanes. 
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Item 

Mean aerodynamic 
chord, c, ft . . . . . .  

Slope  of l i f t  curve 
for  z e r o  Mach number, 
E, per  radian (ref. 6 
and unpublished data) . . .  

l ing  area,  S, sq f t  . . . .  
kverage tes t  weight, W, Ib . 
berage wing loading, 
W/S, Ib/sq ft . . . . . . .  

;ring span, f t  . . . . . . .  
ispect  ratio,  A . . . . .  
:enter-of -gravity 
location,  percent 
M.A.C. . . . . . . . . . .  
Sweep angle of quarter 
chord, A, deg . . . . . .  

Qment of i ne r t i a ,  Iy, 
alug-ft2 . . . . . . . . .  
LV- mass r a t io ,  2 w/s 

Pgca 
. .  

;lope of lift curve  from 

a cos A , per  radian . 
A + 2 cos2A 

Jnswept-wiq 
airplane 

6- 7 

4.7 

237 

10,870 

45.9 

38 -9 

6.39 

28.4 

5 

15, ooo 

40.7 

4.56 

8.08 

3.8 

288 

12,820 

44.5 

37. I 

4.79 

22.0 

35 

17,480 

40.6 

3.84 

9 

Equivalent 
unswept win@ 

~~ 

6.62 

4.64 

288 

12,820 

44.5 

45. 3 

7- 15 

-"- 

0 

- " - 

40.6 

4.68 
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FREQUENCY DISTRIBUTION OF ACCEIERATION 
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:lass interval, An, g Unswept-wing airplane Swept-wing airplane 
~ ~~ 

V= 300 MPH 

0.20 t o  0.25 
.25 t o  -30 

0 4 0  to- .45 
.45 t o  -30 

.55 t o  .60 

.30 to- .35 
-35 t o  -40 

.50 t o  .55. . .  

.60 t o  .65 

.65 t o  .70 

.70 t o  -75 

.75 t o  -80 

Tota l  f l igh t  miles I 522.6 

”_ 

477 
225 
116 
52 
23 
13 
2 
2 
2 
3 
0 

517.4 

0.35 to 0.40 

-45 t o  .50 . 50 td -55 

9 4 . 0  t o  .45 

.55 to -60 

.60 to .65 

.65 t o  .70 

.70 to -75 

.E to .80 

.80 to .85 

.%5 t o  .go 
-90 to .95 
.95 to 1.00 

1.00 to 1.05 
1.05 t o  1.10 
1.10 t o  1.15 
1.15 to 1.20 

399 
270 
176 
118 
62 
37 
28 
12 
8 
8 
4 
0 
1 
2 
I 
2 
0 

523.7 
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(b) The swept-wing airplane.  

Figure 2. - Static-pressure-source calibration of t e s t ' -  airplanes by 
fly-by method. 
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I Figure 3.- Average number of miles flown t o  exceed a given acceleration 
increment. 
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FQure 4.- Ratio of gust loads 011 a swept and w e p t  wing. 
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Figure 5 .- Frequency distribution of gust gradient distances. 
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Figure 6.- Wind-tunnel lift-curve slopes of test airplanes (ref. 6 
and unpublished aata). 


